Lagrange linear partial differential equations

The equation of the form

$$
P p+Q q=R
$$

is known as Lagrange linear equation and P, Q and R are functions of y and z. To solve this type of equations it is enough to solve the equation which the subsidiary equation

$$
\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}
$$

From the above subsidiary equation we can obtain two independent solutions $u(x, y, z)=c_{1}$ and $v(x, y, z)=c_{2}$, then the solution of the Lagrange's equation is given by $\phi(u, v)=0$.

There are two methods of solving the subsidiary equation known as method of grouping and method of multipliers.

Method of Grouping

Consider the subsidiary equation

$$
\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}
$$

Take any two ratios of the above equation say the first two or first and third or second and third. Suppose we take $\frac{d x}{P}=\frac{d y}{Q}$ and if the functions P and Q may contain the variable z, then eliminate the variable z. Then the direct integration gives $u(x, y)=c_{1}, v(y, z)=c_{2}$, then the solution of the Lagrange's equation is given by $\phi(u, v)=0$.

Method of multipliers

Choose any three multipliers ℓ, m, n which may be constants or functions of x, y and z such that

$$
\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}=\frac{\ell d x+m d y+n d z}{\ell P+m Q+n R}
$$

If the relation $\ell P+m Q+n R=0$, then $\ell d x+m d y+n d z$. Now direct integration gives us a solution

$$
u(x, y, z)=c_{1} .
$$

Similarly any other set of multipliers $\ell^{\prime}, m^{\prime}, n^{\prime}$ gives another solution

$$
v(x, y, z)=c_{2} .
$$

Examples on method of Grouping

Example 1.

Solve $x p+y q=z$.
Solution. The subsidiary equation is $\frac{d x}{x}=\frac{d y}{y}=\frac{d z}{z}$. Taking the first ratio we have $\frac{d x}{x}=\frac{d y}{y}$. Integrating we get

$$
\begin{aligned}
\log x & =\log y+\log c_{1} \\
\log \frac{x}{y} & =\log c_{1} \\
\frac{x}{y} & =c_{1} .
\end{aligned}
$$

Taking the second and third ratios we have $\frac{d y}{y}=\frac{d z}{z}$. Integrating we get

$$
\begin{aligned}
\log y & =\log z+\log c_{2} \\
\log \frac{y}{z} & =\log c_{2} \\
\frac{y}{z} & =c_{2} .
\end{aligned}
$$

The required solution is $\phi\left(\frac{x}{y}, \frac{y}{z}\right)=0$.

Example 2.

Solve $x p+y q=x$.
Solution. The subsidiary equation is $\frac{d x}{x}=\frac{d y}{y}=\frac{d z}{z}$. Taking the first ratio we have $\frac{d x}{x}=\frac{d y}{y}$. Integrating we get

$$
\begin{aligned}
\log x & =\log y+\log c_{1} \\
\frac{x}{y} & =c_{1} .
\end{aligned}
$$

Taking the first and third ratios we have

$$
\begin{aligned}
\frac{d x}{x} & =\frac{d z}{x} \\
d x & =d z
\end{aligned}
$$

Integrating we get

$$
\begin{gathered}
x=z+c_{2} \\
x-z=c_{2} .
\end{gathered}
$$

The required solution is $\phi\left(\frac{x}{y}, x-z\right)=0$.

Example 3.

Solve $\tan x p+\tan y q=\tan z$.
Solution. The subsidiary equation is $\frac{d x}{\tan x}=\frac{d y}{\tan y}=\frac{d z}{\tan z}$.
Integrating $\frac{d x}{\tan x}=\frac{d y}{\tan y}$ we get

$$
\log \sin x=\log \sin y+\log c_{1} \quad \Longrightarrow \log \frac{\sin x}{\sin y}=\log c_{1} \quad \Longrightarrow \frac{\sin x}{\sin y}=c_{1}
$$

Integrating $\frac{d y}{\tan y}=\frac{d z}{\tan z}$ we get

$$
\log \sin y=\log \sin y+\log c_{2} \quad \Longrightarrow \log \frac{\sin y}{\sin z}=\log c_{2} \quad \Longrightarrow \frac{\sin y}{\sin z}=c_{2}
$$

The required solution is $\phi\left(\frac{\sin x}{\sin y}, \frac{\sin y}{\sin z}\right)=0$.

Example 4.

Find the complete integral of the partial differential equation $(1-x) p+(2-y) q=3-z$. Solution. The subsidiary equation is

$$
\frac{d x}{1-x}=\frac{d y}{2-y}=\frac{d z}{3-z}
$$

Integrating $\frac{d x}{1-x}=\frac{d y}{2-y}$ we get

$$
-\log (1-x)=-\log (2-y)+\log c_{1} \Longrightarrow \frac{2-y}{1-x}=c_{1}
$$

Integrating $\frac{d x}{1-x}=\frac{d z}{3-z}$ we get

$$
-\log (1-x)=-\log (3-z)+\log c_{2} \Longrightarrow \frac{3-z}{1-x}=c_{2}
$$

The requird solution is $\phi\left(\frac{2-y}{1-x}, \frac{3-z}{1-x}\right)=0$.

Examples based on method of multipliers

Example 5.

Solve $(y-z) p+(z-x) q=(x-y)$.
Solution. The given equation is Lagrange equation. Hence the subsidiary equation is

$$
\frac{d x}{y-z}=\frac{d y}{z-x}=\frac{d z}{x-y}
$$

Using the multipliers $1,1,1$ we have

$$
\text { Each ratio }=\frac{d x+d y+d z}{y-z+z-x+x-y}=\frac{d x+d y+d z}{0} \Longrightarrow x+y+z=c_{1} .
$$

Using the multipliers x, y, z we have

$$
\text { Each ratio }=\frac{x d x+y d y+z d z}{x(y-z)+y(z-x)+z(x-y)}=\frac{x d x+y d y+z d z}{0} \Longrightarrow x^{2}+y^{2}+z^{2}=2 c_{2} .
$$

Hence the solution is $\phi\left(x+y+z, x^{2}+y^{2}+z^{2}\right)=0$.

Example 6.

Solve $x(y-z) p+y(z-x) q=z(x-y)$.
Solution. The given equation is Lagrange equation. Hence the subsidiary equation is

$$
\frac{d x}{x(y-z)}=\frac{d y}{y(z-x)}=\frac{d z}{z(x-y)} .
$$

Using the multipliers $1,1,1$ we have

$$
\text { Each ratio }=\frac{d x+d y+d z}{x y-x z+y z-x y+x z-y z}=\frac{d x+d y+d z}{0} \Longrightarrow x+y+z=c_{1} .
$$

Using the multipliers $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ we have

$$
\text { Each ratio }=\frac{\frac{1}{x} d x+\frac{1}{y} d y+\frac{1}{z} d z}{(y-z+z-x+x-y)} \Longrightarrow \frac{\frac{1}{x} d x+\frac{1}{y} d y+\frac{1}{z} d z}{0} \Longrightarrow x y z=c_{2}
$$

Hence the solution is $\phi(x+y+z, x y z)=0$.

Example 7.

Solve $x\left(y^{2}-z^{2}\right) p+y\left(z^{2}-x^{2}\right) q=z\left(x^{2}-y^{2}\right)$.
Solution. The given equation is Lagrange equation. Hence the subsidiary equation is

$$
\frac{d x}{x\left(y^{2}-z^{2}\right)}=\frac{d y}{y\left(z^{2}-x^{2}\right)}=\frac{d z}{z\left(x^{2}-y^{2}\right)} .
$$

Using the multipliers x, y, z we have

$$
\begin{gathered}
\text { Each ratio }=\frac{x d x+y d y+z d z}{x^{2}\left(y^{2}-z^{2}\right)+y^{2}\left(z^{2}-x^{2}\right)+z^{2}\left(x^{2}-y^{2}\right)}=\frac{x d x+y d y+y d z}{0} \\
\Longrightarrow x^{2}+y^{2}+z^{2}=c_{1}
\end{gathered}
$$

Choosing the multipliers $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ we have

$$
\text { Each ratio }=\frac{\frac{1}{x} d x+\frac{1}{y} d y+\frac{1}{z} d z}{\left(y^{2}-z^{2}\right)+\left(z^{2}-x^{2}\right)+\left(x^{2}-y^{2}\right)}=\frac{\frac{1}{x} d x+\frac{1}{y} d y+\frac{1}{z} d z}{0} \Longrightarrow x y z=c_{2}
$$

The required solution is $\phi\left(x^{2}+y^{2}+z^{2}, x y z\right)=0$.

Example 8.

Solve $x^{2}(y-z)+y^{2}(z-x) q=z^{2}(x-y)$.
Solution. The given equation is Lagrange equation. Hence the subsidiary equation is

$$
\frac{d x}{x^{2}(y-z)}=\frac{d y}{y^{2}(z-x)}=\frac{d z}{z^{2}(x-y)} .
$$

Using the multipliers $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ we have

$$
\text { Each ratio }=\frac{\frac{1}{x} d x+\frac{1}{y} d y+\frac{1}{z} d z}{x(y-z)+y(z-x)+z(x-y)}=\frac{\frac{1}{x} d x+\frac{1}{y} d y+\frac{1}{z} d z}{0} \Longrightarrow x y z=c_{1}
$$

Using the multipliers $\frac{1}{x^{2}}, \frac{1}{y^{2}}, \frac{1}{z^{2}}$ we have

$$
\text { Each ratio }=\frac{\frac{1}{x^{2}} d x+\frac{1}{y^{2}} d y+\frac{1}{z^{2}} d z}{(y-z)+(z-x)+(x-y)}=\frac{\frac{1}{x^{2}} d x+\frac{1}{y^{2}} d y+\frac{1}{z^{2}} d z}{0} \Longrightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=c_{2} \text {. }
$$

The required solution is $\phi\left(x y z, \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=0$.

Example 9.

Solve $(4 y-3 z) p+(2 z-4 x) q=(3 x-2 y)$.
Solution. The given equation is Lagrange equation. Hence the subsidiary equation is $\frac{d x}{4 y-3 z}=\frac{d y}{2 z-4 x}=\frac{d z}{3 z-2 y}$. Using the multipliers 2, 3, 4 we have

$$
\begin{aligned}
\text { Each ratio } & =\frac{2 d x+3 d y+4 d z}{2(4 y-3 z)+3(2 z-4 x)+4(3 x-2 y)}=\frac{2 d x+3 d y+4 d z}{0} \\
\Rightarrow \quad 2 d x+3 d y+4 d z & =0 \Longrightarrow 2 x+3 y+4 z=0
\end{aligned}
$$

Using the multipliers x, y, z we have

$$
\begin{aligned}
\text { Each ratio } & =\frac{x d x+y d y+z d z}{x(4 y-3 z)+y(2 z-4 x)+z(3 x-2 y)}=\frac{x d x+y d y+z d z}{0} \\
\Rightarrow \quad x d x+y d y+z d z & =0 \Longrightarrow x^{2}+y^{2}+z^{2}=c_{2} .
\end{aligned}
$$

The required solution $\phi\left(2 x+3 y+4 z, x^{2}+y^{2}+z^{2}\right)=0$.

Example 10.

Solve $x\left(y^{2}+z\right) p-y\left(x^{2}+z\right) q=z\left(x^{2}-y^{2}\right)$.
Solution. The given equation is Lagrange equation. Hence the subsidiary equation is $\frac{d x}{x\left(y^{2}+z\right)}=\frac{d x}{-y\left(x^{2}+z\right)}=\frac{d z}{z\left(x^{2}-y^{2}\right)}$. Using the multipliers $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ we have

$$
\begin{gathered}
\text { Each ratio }=\frac{\frac{d x}{x}+\frac{d y}{y}+\frac{d z}{z}}{y^{2}+z-x^{2}-z+z^{2}-y^{2}}=\frac{\frac{d x}{x}+\frac{d y}{y}+\frac{d z}{z}}{0} \\
\Rightarrow \quad \frac{d x}{x}+\frac{d y}{y}+\frac{d z}{z}=0 \Longrightarrow \log x+\log y+\log z=\log c_{1} \Longrightarrow x y z=c_{1} .
\end{gathered}
$$

Using the multipliers $x, y,-1$ we have

$$
\begin{aligned}
\text { Each ratio } & =\frac{x d x+y d y-d z}{z^{2}\left(y^{2}+z\right)-y^{2}\left(x^{2}+z\right)-z\left(x^{2}-y^{2}\right)}=\frac{x d x+y d y-d z}{x^{2} y^{2}+x^{2} z-y^{2} x^{2}-y^{2} z-z x^{2}+z y^{2}} \\
& =\frac{x d x+y d y-d z}{0} \Rightarrow \quad x d x+y d y-d z=0 \Longrightarrow x^{2}+y^{2}-2 z=c_{2} .
\end{aligned}
$$

The required solution is $\phi\left(x y z, x^{2}+y^{2}-2 z\right)=0$.

Example 11.

Find the general solution of $z(x-y)=x^{2} p-y^{2} q$.
Solution. The given equation is Lagrange equation. Hence the subsidiary equation is $\frac{d x}{x^{2}}=\frac{d y}{-y^{2}}=\frac{d z}{z(x-y)}$. Taking the first two ratios

$$
\frac{d x}{x^{2}}=\frac{d y}{-y^{2}} \Longrightarrow-\frac{1}{x}=\frac{1}{y}+c_{1} \Longrightarrow \frac{1}{y}-\frac{1}{x}=c_{1} .
$$

Adding first two ratios and comparing this with third

$$
\begin{aligned}
\frac{d x+d y}{x^{2}-y^{2}} & =\frac{d z}{z(x-y)} \Longrightarrow \frac{d x+d y}{(x+y)(x-y)}=\frac{d z}{z(x-y)} \Longrightarrow \frac{d x+d y}{x+y}=\frac{d z}{z} \\
\log (x+y) & =\log z+\log c_{2} \Longrightarrow \log \frac{(x+y)}{z}=\log c_{2} \Longrightarrow \frac{x+y}{z}=c_{2}
\end{aligned}
$$

The required solution is $\phi\left(\frac{1}{y}-\frac{1}{x}, \frac{z+y}{z}\right)=0$.

Example 12.

Solve $\left(x^{2}-y^{2}-z^{2}\right) p+2 x y q=2 x z$.
Solution. The given equation is Lagrange equation. Hence the subsidiary equation is $\frac{d x}{\left(x^{2}-y^{2}-z^{2}\right)}=\frac{d y}{2 x y}=\frac{d z}{2 x z}$. Taking the second and third ratios

$$
\frac{d y}{2 x y}=\frac{d z}{2 x z} \Longrightarrow \frac{d y}{y}=\frac{d z}{z} \Longrightarrow \log y=\log z+\log c_{1} \Longrightarrow \frac{y}{z}=c_{1}
$$

Using the multipliers x, y, z we have

$$
\text { Each ratio }=\frac{x d x+y d y+z d z}{x^{3}-x y^{2}-x z^{2}+2 x y^{2}+2 x z^{2}}=\frac{x d x+y d y+z d z}{x^{3}+x y^{2}+x z^{2}}=\frac{x d x+y d y+z d z}{x\left(x^{2}+y^{2}+z^{2}\right)}
$$

Comparing this with the second ratio

$$
\begin{aligned}
\frac{d y}{2 x y} & =\frac{x d x+y d y+z d z}{x\left(x^{2}+y^{2}+z^{2}\right)} \Longrightarrow \frac{d y}{y}=\frac{2(x d x+y d y+z d z)}{\left(x^{2}+y^{2}+z^{2}\right)} \\
\log y & =\log \left(x^{2}+y^{2}+z^{2}\right)+\log c_{2} \Longrightarrow \frac{y}{x^{2}+y^{2}+z^{2}}=c_{2}
\end{aligned}
$$

Hence the solution is $\phi\left(\frac{y}{z}, \frac{y}{x^{2}+y^{2}+z^{2}}\right)=0$.

Example 13.

Solve $\left(x^{2}-y z\right) p+\left(y^{2}-x z\right) q=z^{2}-x y$.
Solution. The given equation is Lagrange equation. Hence the subsidiary equation is

$$
\frac{d x}{x^{2}-y z}=\frac{d y}{y^{2}-x z}=\frac{d z}{z^{2} x y} .
$$

Using the multipliers $1,1,1$ we have

$$
\begin{equation*}
\text { Each ratio }=\frac{d x+d y+d z}{x^{2}+y^{2}+z^{2}-y z-x z-x y} \text {. } \tag{1}
\end{equation*}
$$

Using the multipliers x, y, z we have

$$
\begin{equation*}
\text { Each ratio }=\frac{x d x+y d y+z d z}{x^{3}+y^{3}+z^{3}-3 x y z} \tag{2}
\end{equation*}
$$

Solution (contd...)

Comparing (1) and (2) we have

$$
\begin{aligned}
& \qquad \begin{aligned}
& \frac{d x+d y+d z}{x^{2}+y^{2}+z^{2}-y z-x z-x y}=\frac{x d x+y d y+z d z}{x^{3}+y^{3}+z^{3}-3 x y z} \\
& \frac{d x+d y+d z}{x^{2}+y^{2}+z^{2}-y z-x z-x y}=\frac{x d x+y d y+z d z}{(x+y+z)\left(x^{2}+y^{2}+z^{2}-y z-x z-x y\right)} \\
& \text { Taking the first two ratios }
\end{aligned} \text { } \quad \text { (xy+dy+dz}=\frac{x d x+y d y+z d z}{(x+y+z)} \quad \Longrightarrow x y+y z+x z=c_{1} .
\end{aligned}
$$

Each ratio $=\frac{d x-d y}{x^{2}-y z-\left(y^{2}-x z\right)}=\frac{d x-d y}{x^{2}-y^{2}+z(x-y)}=\frac{d x-d y}{(x-y)(x+y+z)}$.
Taking the second and third ratios
Each ratio $=\frac{d y-d z}{y^{2}-x z-\left(z^{2}-x y\right)}=\frac{d y-d z}{y^{2}-z^{2}+x(y-z)}=\frac{d y-d z}{(y-z)(x+y+z)}$
Comparing (3) and (4) we have

$$
\frac{d x-d y}{(x-y)(x+y+z)}=\frac{d y-d z}{(y-z)(x+y+z)} \Longrightarrow \frac{x-y}{y-z}=c_{2} .
$$

Hence the solution is $\phi\left(x y+y z+x z, \frac{x-y}{y-z}\right)=0$.

Example 14.

Solve $\left(x^{2}+y^{2}+y z\right) p+\left(x^{2}+y^{2}-x z\right) q=z(x+y)$.
Solution. The given equation is Lagrange equation. Hence the subsidiary equation is

$$
\frac{d x}{x^{2}+y^{2}+y z}=\frac{d y}{x^{2}+y^{2}-x z}=\frac{d z}{z(x+y)} .
$$

Using the multipliers $1,-1,-1$ we have

$$
\text { Each ratio }=\frac{d x-d y-d z}{x^{2}+y^{2}+y z-x^{2}-y^{2}+x z-z x-x y}=\frac{d x-d y-d z}{0} \Longrightarrow x-y-z=c_{1} .
$$

Using the multipliers $x, y, 0$ we have

$$
\begin{aligned}
\text { Each ratio }=\frac{x d x+y d y}{x^{3}+x y^{2}+x y z+x^{2} y+y^{3}-x y z} & =\frac{d z}{z(x+y)} \\
& \frac{x d x+y d y}{(x+y)\left(x^{2}+y^{2}\right)}=\frac{d z}{z(x+y)} \Longrightarrow \frac{x d x+y d y}{x^{2}+y^{2}}=\frac{d z}{z} \Longrightarrow \frac{x^{2}+y^{2}}{z^{2}}=c_{2} .
\end{aligned}
$$

Hence the solution is $\phi\left(x-y-z, \frac{x^{2}+y^{2}}{z^{2}}\right)=0$.

Example 15.

Solve $(x+y) z p+(x-y) z q=x^{2}+y^{2}$.
Solution. The given equation is Lagrange equation. Hence the subsidiary equation is

$$
\frac{d x}{(x+y) z}=\frac{d y}{(x-y) z}=\frac{d z}{x^{2}+y^{2}} .
$$

Using the multipliers $x,-y,-z$ we have

$$
\begin{aligned}
\text { Each ratio } & =\frac{x d x-y d y-z d z}{x^{2} z+x y z-x y z+y^{2} z-x^{2} z-y^{2} z}=\frac{x d x-y d y-z d z}{0} \\
& \Rightarrow \quad x d x-y d y-z d z=0 \Longrightarrow x^{2}-y^{2}-z^{2}=c_{1} .
\end{aligned}
$$

Using the multipliers $y, x,-z$ we have

$$
\begin{aligned}
\text { Each ratio } & =\frac{y d x+x d x-z d z}{x y z+y^{2} z+x z^{2}-x y z-x z^{2}-y^{2} z}=\frac{y d x+x d y-z d z}{0} \\
& \Longrightarrow y d x+x d x-z d z=0 \Longrightarrow 2 x y-z^{2}=c_{2}
\end{aligned}
$$

Hence the solution is $\phi\left(x^{2}-y^{2}, z^{2}, 2 x y-z^{2}\right)=0$.

